# Linear Operators, Part I: General Theory (Wiley...

Nelson James Dunford was an American mathematician, known for his work in functional analysis, namely integration of vector valued functions, ergodic theory, and linear operators. The Dunford decomposition, Dunford-Pettis property, and Dunford-Schwartz theorem bear his name.

## Linear Operators, Part I: General Theory (Wiley...

We consider a linear operator pencil with complex parameter mapping one Hilbert space onto another. It is known that the resolvent is analytic in an open annular region of the complex plane centred at the origin if and only if the coefficients of the Laurent series satisfy a doubly-infinite set of left and right fundamental equations and are suitably bounded. If the resolvent has an isolated singularity at the origin we propose a recursive orthogonal decomposition of the domain and range spaces that enables us to construct the key nonorthogonal projections that separate the singular and regular components of the resolvent and subsequently allows us to find a formula for the basic solution to the fundamental equations. We show that each Laurent series coefficient in the singular part of the resolvent can be approximated by a weakly convergent sequence of finite-dimensional matrix operators and we show how our analysis can be extended to find a global expression for the resolvent of a linear pencil in the case where the resolvent has only a finite number of isolated singularities.

Functional analysis is a branch of mathematical analysis, the core of which is formed by the study of vector spaces endowed with some kind of limit-related structure (for example, inner product, norm, or topology) and the linear functions defined on these spaces and respecting these structures in a suitable sense. The historical roots of functional analysis lie in the study of spaces of functions and the formulation of properties of transformations of functions such as the Fourier transform as transformations defining, for example, continuous or unitary operators between function spaces. This point of view turned out to be particularly useful for the study of differential and integral equations.

The usage of the word functional as a noun goes back to the calculus of variations, implying a function whose argument is a function. The term was first used in Hadamard's 1910 book on that subject. However, the general concept of a functional had previously been introduced in 1887 by the Italian mathematician and physicist Vito Volterra.[1][2] The theory of nonlinear functionals was continued by students of Hadamard, in particular FrÃ©chet and LÃ©vy. Hadamard also founded the modern school of linear functional analysis further developed by Riesz and the group of Polish mathematicians around Stefan Banach.

In modern introductory texts on functional analysis, the subject is seen as the study of vector spaces endowed with a topology, in particular infinite-dimensional spaces.[3][4] In contrast, linear algebra deals mostly with finite-dimensional spaces, and does not use topology. An important part of functional analysis is the extension of the theories of measure, integration, and probability to infinite dimensional spaces, also known as infinite dimensional analysis.

In Banach spaces, a large part of the study involves the dual space: the space of all continuous linear maps from the space into its underlying field, so-called functionals. A Banach space can be canonically identified with a subspace of its bidual, which is the dual of its dual space. The corresponding map is an isometry but in general not onto. A general Banach space and its bidual need not even be isometrically isomorphic in any way, contrary to the finite-dimensional situation. This is explained in the dual space article.

[34] T. Wunderli, On time flows of minimizers of general convex functionals of linear growth with variable exponent in BV space and stability of pseudosolutions., J. Math. Anal. Appl. 364 (2010), no. 2, 591-598. [ Links ] 041b061a72